リサイクル材料を利用した プレミックス G R C 技術資料 (フライアッシュ編)

日本電気硝子株式会社

2004年10月1日編

1.目的

フライアッシュを使用したGRCの基本特性を調査する。

2.フライアッシュの特性

JIS A 6201に適合したフライアッシュ 種を使用した。

表 - 1 フライアッシュの特性

密度	比表面積	化学組成(wt%)				
(g/cm^3)	(cm^2/g)	SiO ₂	A1 ₂ 0 ₃	Fe ₂ 0 ₃	Ca0	Mg0
2.20	3780	57	31	4	2	1

3.試験方法

3 - 1 配合

フライアッシュはセメントの質量に対して置換し、評価を行った。

表 - 2 フライアッシュの配合(重量部)

		フライアッシュ置換率		
	基本配合	20%	40%	60%
普通ポルトランドセメント	100	80	60	40
フライアッシュ 種		20	40	60
珪砂 5 号	100	100	100	100
高性能AE減水剤	0.6	0.6	0.6	0.6
水	32	32	32	32
耐アルカリガラス繊維	7.0	7.0	7.0	7.0
(ACS19PH-901X)				

3 - 2 比重

JIS A 1116に準じてフレッシュなGRCモルタルの体積と質量を測定し、生比重を算出した。なお気乾比重は、材令 12 週まで 20 ,60% RHの条件で養生した試験体の体積と質量を測定し、算出した。

3 - 3 空気量

JIS A 1128の空気室圧力方法に準じて、フレッシュなGRCモルタルの空気量を 測定した。

3 - 4 フロー値

JIS R 5201のフロー試験に準じて、フレッシュなGRCモルタルのフロー値を測定した。

3-5 曲げ試験

・曲げ試験方法:中央集中載荷曲げ試験

・支点間距離:225mm ・載荷速度:2mm/min

・試験体寸法:長さ275×幅50×厚み15mm

·試験体数:各6体

・養生:20 ,60% R Hで12週間保管

3-6 温水浸漬促進試験

3 - 5 で得られた試験体を材令 12 週から 70 の温水に 10 日間浸漬し、取り出した後、20 60% R H の条件室で 3 日間保管して 3 - 5 の曲げ試験を行った。

3 - 7 乾燥収縮率

JIS A 1129のコンタクトゲージ方法に準じ、以下の条件で乾燥収縮率を測定した。

・試験体寸法:長さ 250×幅 50×厚み 10mm

•試験体数:各3体

・基長の測定:成形翌日に脱型し、ゲージプラグを約 200mmの間隔で貼り付け、基長と して測定した。

・養生:20 ,60% R H の条件室で保管

3 - 8 凍結融解試験

JIS A 1148(A法)に準じ、以下の方法で試験を行った。

 $45 \times 10 \times 200$ mmのGRC試験体を作成し、図 - 1 , 2 のようにコンクリート角柱に試験体を張り付け、JIS法と同じ寸法の $100 \times 100 \times 400$ mmの試験体角柱を作製した。この角柱を試験体容器に入れ、凍結融解試験機に投入した。

所定のサイクル数終了後、この角柱を取り出し、所定の試験体を取り外し、20 ,60% R Hの養生室で1週間保管後、曲げ試験を行い、

曲げ弾性率を測定した。

凍結融解性能は、曲げ弾性率の保持率で評価した。 曲げ試験は、3 - 5 曲げ試験方法に準じ、支点間距離 を 160mmに変更して実施した。

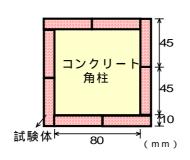


図 - 1 試験体角柱平面図

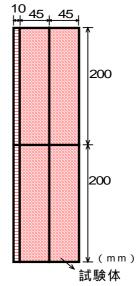


図 - 2 試験体角柱立面図

4.試験結果

4-1 フレッシュなGRCモルタルの特性と気乾比重

表-3 フレッシュなGRCモルタルの特性と比重

配合内容	基本配合	20%置換	40%置換	60%置換
G R C 生比重	2.08	2.07	2.07	2.07
GRC気乾比重	2.03	2.01	1.98	1.95
空気量(%)	8.0	7.4	6.4	4.5
フロー値(mm)	165	172	160	150

4-2 曲げ特性

■材令12週 □温水浸漬10日後

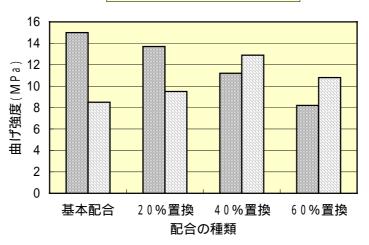


図 - 3 曲げ強度

■材令12週 □温水浸漬10日後

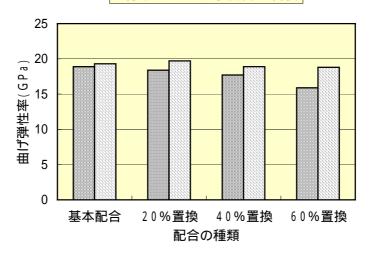


図 - 4 曲げ弾性率 Copyright(C) 2005 Nippon Electric Glass Co., Ltd. All rights reserved. ECO GRC (FA) - 3/5

4 - 3 乾燥収縮率

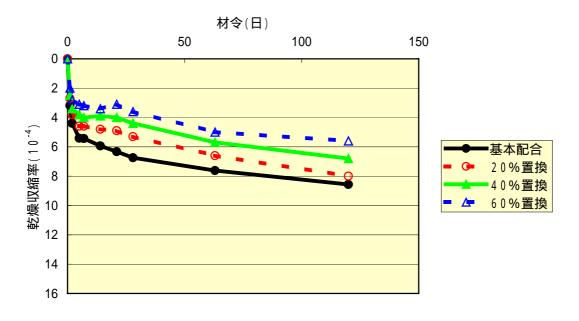


図 - 5 乾燥収縮率

4-4 耐凍結融解性能

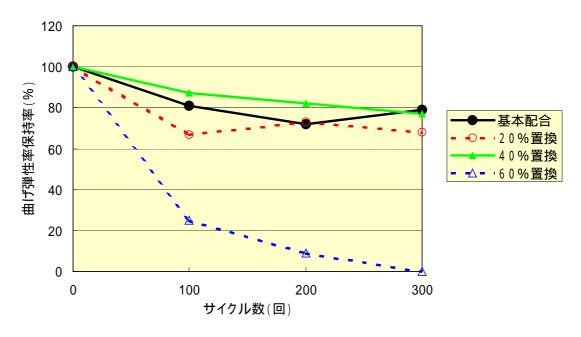


図 - 6 耐凍結融解性能

5.まとめ

- ・フライアッシュの置換率が大きくなると、生比重に変化は見られなかったが、気乾比重 が小さくなる傾向を示した。
- ・フライアッシュの置換率が大きくなると、空気量とフロー値が低下する傾向を示した。
- ・フライアッシュの置換率が大きくなると、材令 12 週での曲げ強度と弾性率が低下する傾向を示し、基本配合より低くなった。
- ・フライアッシュの置換率が大きくなると、温水浸漬後の曲げ強度が基本配合より高くなる傾向を示し、置換率 40%以上では材令 12 週の強度より高くなった。
- ・フライアッシュの置換率が大きくなると、乾燥収縮率が小さくなる傾向を示した。
- ・フライアッシュの置換率が40%以下では基本配合と変わらない耐凍結融解性能を示したが、置換率60%では大幅に悪化した。